

SUBDIRECCIÓN DE EDUCACIÓN MAESTRÍA EN CIENCIAS EN AGROECOSISTEMAS TROPICALES

PROGRAMA DE CURSO

NOMBRE DEL CURSO: Introducción a la Estadística

CLAVE: CTH-602 CRÉDITOS: 3
HORAS CLASE POR SEMANA: 3 TOTAL DE HORAS: 48

FECHA DE ACTUALIZACIÓN: marzo de 2020

Pre-requisitos: Algún curso de estadística a nivel licenciatura. Manejar sistema operativo Windows y archivos de texto, LibreOffice o Excel, uso de buscadores en internet.

Relación con las Líneas de Generación y/o Aplicación del Conocimiento (LGAC): Este curso se relaciona con las tres LGAC del programa de Maestría en Agroecosistemas Tropicales: Cadenas Agroalimentarias y Agroindustriales del Trópico (CAAT), Evaluación y Rediseño de Agroecosistemas (ERAES), y Recursos Naturales, Agroecosistemas y Cambio Climático (RENACC)

Propósito general:

Que el estudiante, a través de los temas cubiertos por el curso, utilice un vocabulario estadístico para interpretar y describir el análisis de investigaciones relacionadas con los agroecosistemas tropicales.

Que el estudiante, mediante las herramientas conceptuales y de software que aporta el curso, analice datos obtenidos de investigaciones en sistemas agrícolas para describir, evaluar o seleccionar tratamientos, escenarios o modificaciones de los mismos.

Genéricas:

Procesa información viable y confiable a nivel local, nacional e internacional para plantear soluciones de forma creativa e innovadora a problemas de los agroecosistemas tropicales.

Comunica y difunde de manera concisa y clara los resultados de la investigación e innovación a la sociedad.

Especificas:

Competencias

Conoce los conceptos básicos de la estadística para desarrollar y documentar resultados de investigaciones bajo el enfoque de los agroecosistemas complejos.

Usa software para el análisis estadístico de estudios observacionales y experimentales en agroecosistemas de manera planeada.

Analiza objetivamente resultados de datos colectados y experimentos para su difusión en reportes y documentos científicos para audiencias técnicas o generales.

Aprendizajes esperados:

- Aplicar y relacionar los conceptos estadísticos para el análisis e interpretación de datos obtenidos de la investigación en agroecosistemas.
- Manejar datos estructurados para su síntesis y análisis cuantitativo.
- Reconocer los diseños experimentales más comunes para su aplicación práctica en sistemas agrícolas.

- Proponer y evaluar hipótesis estadísticas para seleccionar mejores tratamientos en la investigación de agroecosistemas.
- Aplicar regresión lineal para establecer la relación entre variables de interés en la producción agrícola.
- Usar programas de cómputo para manejar y analizar datos derivados de estudios observacionales o experimentales en el contexto de sistemas complejos.

Contenidos conceptuales:

- 1. Conceptos elementales de la estadística.
- Descripción de poblaciones: población, muestra, parámetros, estimadores, media, varianza, error estándar, coeficiente de variación, proporciones.
- 3. Introducción a la probabilidad.
- Distribuciones probabilísticas. Pruebas de bondad de ajuste. Distribuciones continuas y discretas.
- Introducción a las pruebas de hipótesis. Suposiciones de las pruebas de hipótesis, procedimiento general de pruebas de hipótesis.
- Comparación de dos tratamientos. El concepto de modelo lineal.
- Principios de la experimentación. Conceptos, objetivos y fundamentos de los diseños. Consideraciones en la planeación, desarrollo y análisis. ANOVA y pruebas post hoc.
- 8. Características del diseño modelo aditivo lineal del DCA. Cuadro de ANOVA y su interpretación.
- 9. Introducción a los modelos lineales.
- Pruebas de comparaciones múltiples. Recomendaciones en el uso de comparaciones múltiples. Tipos de comparaciones múltiples.
- 11. Comparaciones planeadas y contrastes.
- 12. Características del diseño en bloques completos al azar DBCA. Distribución de referencia de F. Cuadro de ANOVA y su interpretación.
- 13. Arreglos factoriales. Tipos de variables predictoras. Superficies de respuesta. Análisis de experimentos factoriales.

Contenidos procedimentales:

- Uso del lenguaje R
- Procesamiento de información para obtener estadísticas descriptivas
- Generación de gráficas 2D para reportes científicos
- Ejecución de pruebas de bondad de ajuste, prueba de Student para dos comparaciones, prueba de F para el análisis de varianza, pruebas de comparaciones múltiples y contrastes.
- Estimación de parámetros de modelos lineales para diseños experimentales. Diseño completamente al azar, diseño en bloques completos al azar. Arreglos factoriales de tratamientos.
- Interpretación de los resultados del análisis de varianza.
- Ajuste modelos lineales para variables cuantitativas, uso de modelos de regresión.
- Análisis de tablas de contingencia.

Contenidos actitudinales:

- Colaboración en equipo
- Ética en la aplicación del análisis estadístico e interpretación de resultados.
- Valoración de los alcances y propósitos del análisis estadístico de estudios observaciones y experimentos en el contexto de agroecosistemas.

- 14. Introducción a la regresión lineal y correlación. El modelo de línea recta. Análisis de varianza y estimación de parámetros. Indicadores de ajuste de modelo lineal. Concepto de multicolinealidad.
- 15. Introducción al análisis de datos categóricos. Pruebas de hipótesis para tablas de contingencia. Alternativas para el análisis de diseños experimentales convencionales.

Metodología para la construcción del conocimiento

Actividades de aprendizaje con el docente:

- 1. Aplicar funciones de análisis del lenguaje numérico R con ejemplos de agroecosistemas sustentables, innovaciones tecnológicas y políticas públicas.
- Lectura y discusión de artículos, reportes técnicos y libros, fundamentales para el análisis estadístico de datos, con participación de género, de ser posible.
- 3. Presentación de temas con el uso de herramientas audiovisuales como proyector, internet, PowerPoint.
- Aplicación de metodologías para el análisis cuantitativo de experimentos con datos derivados de investigaciones en agroecosistemas.
- 5. Analizar estudios de caso del ámbito de sistemas agrícolas para su manejo sustentable, conservación de la biodiversidad y producción sostenible de alimentos.

Actividades de aprendizaje autónomo:

- 1. Lectura de publicaciones relacionadas con una temática especifica.
- 2. Consulta de recursos en internet para el análisis estadístico de datos.
- 3. Consulta de recursos en internet para realizar gráficas 2D de apoyo a la investigación.
- Resolución de problemas derivados del análisis estadístico de datos derivados de experimentos reales u estudios observacionales.
- 5. Las actividades del curso se basan fundamentalmente en lecciones y trabajos que el estudiante puede consultar en el sitio web http://sites.google.com/site/digitcognem/. La comunicación entre los integrantes del curso se realiza vía correo electrónico, WhatsApp y reuniones periódicas.

Indicadores de desempeño para el logro de las competencias:

 Los reportes incluyen los conceptos estadísticos usados de manera apropiada, aplica e interpreta estadísticas descriptivas derivados de datos estructurados y semi-estructurados y presenta graficas de tipo científico de acuerdo con los ejemplos dados en clase. También incluyen la formulación y prueba de hipótesis estadísticas paramétricas, estiman e interpretan parámetros de

Evidencias de aprendizaje:

 Reportes digitales (pdf, word) de tareas asignadas acorde con los temas del curso.

Acreditación:

Calificación mínima de 8.0 (ocho punto cero) en la escala de 0 al 10, de acuerdo con lo establecido en el Reglamento de Actividades Académicas (RAA) vigente.

Evaluación:

Dos exámenes parciales escritos.

modelos lineales e interpretan la significancia de
pruebas estadísticas y sus alternativas. Todo esto
según los temas abordados en el curso.

2. En los exámenes contesta adecuadamente las preguntas y resuelve correctamente los problemas aplicando los métodos aprendidos en el curso.

1.	Reportes digitales
	periódicos.

2. Exámenes de conocimientos.

Calificación:

- 1. Reportes 50%
- 2. Exámenes 50%
 - 25% primer parcial
 - 25% segundo parcial

Bibliografía básica:

Boehmke, B.C. 2016. Data wrangling with R. Springer, New York.

Brown, J.D. 2014 Linear models in matrix form. Springer, New York.

Crawley, M.J. 2007. The R Book. Wiley, New York.

Crawley, M.J. 2015. Statistics. An introduction using R. Wiley, New York.

Faraway, J.J. 2004. Linear models with R. Taylor & Francis, Boca Raton.

Faraway, J.J. 2006. Extending the linear models with R. Taylor & Francis, Boca Raton.

Wickham, H. 2016. Ggplot2 Elegant graphics for data analysis. Springer. New York.

Bibliografía complementaria:

- Draper, N.R., and H. Smith. 1998. Applied Regression Analysis. Wiley. New York.
- López-Collado, J. 2004. Introducción a la Estadística Entomológica. Colegio de Postgraduados. Montecillo, México.
- Sokal, R.R., and F.J. Rohlf. 1995. Biometry. Freeman. New York.
- Steel, R.G.D., J.H. Torrie, and D.A. Dickey. 1997. Principles and procedures of statistics. A Biometric approach. McGraw-Hill Co. New York.