PROGRAMA DE POSTGRADO:	Bioprospección Y sustentabilidad Agrícola en el Trópico (BIOSAT)				
CURSO:	BIOLOGÍA MOLECULAR Y	GENOMAS			
PROFESOR TITULAR:	DRA. AÍDA MARTÍNEZ HEF	RNÁNDEZ			
COLABORADOR (ES):	VARIABLE				
CORREO ELECTRÓNICO:	aida.martinez@colpos.mx				
TELÉFONO:	BSA 624				
CLAVE DEL CURSO:		PRE-R	EQUISITOS:		
TIPO DE CURSO:		PERIO	DO:		_
[X]	Teórico	[]		Primavera	
[]	Práctico Teórico-Práctico			Verano Otoño	
		[]		No aplica	
SE IMPARTE A :		MODA	LIDAD:		_
[X]	Maestría en Ciencias	[X]	Presencial		_
[X]	Doctorado en Ciencias	[]	No presencial		
[]	Maestría Tecnológica	[]	Mixto		
HORAS CLASE:	120	CREDITO	DS: 4		
Presenciales Extra clase Virtuales	130 126	<u> </u>			
Total	256	<u> </u>			

Nota: Un crédito equivale a 64 horas totales (presenciales y extra clases)

PROBLEMA DEL CONTEXTO:

Este es un curso básico en el que se adquieren conocimientos fundamentales actualizados respecto al contenido y estructura de los genomas de procariontes, eucariontes y partículas replicativas; así como de las bases moleculares y mecanismos regulatorios de los procesos de replicación, transcripción y traducción del material genético. Confiere al estudiante comprensión de los procesos metabólicos, fisiológicos, de desarrollo y evolutivos desde un enfoque molecular. Los conceptos adquiridos proporcionan la base para la comprensión de la diversidad genética, el mejoramiento genético, la filogenética, la genómica, transcriptómica y proteómica, así como para el desarrollo de herramientas biotecnológicas aplicadas a la bioprospección y la innovación en el sector agrícola.

COMPETENCIA A FORMAR

Comprender las bases conceptuales y conocimientos de frontera relativos a la estructura, evolución, expresión y regulación de genomas de procariontes, eucariontes y partículas replicativas para integrar los conocimientos adquiridos en la comprensión de procesos fisiológicos, metabólicos y de desarrollo desde un enfoque molecular y genómico; así como de la diversidad genética, el mejoramiento genético, la genómica y otros temas fundamentados en la biología molecular.

Para alcanzar este objetivo se van a desarrollar las siguientes competencias:

Cognitivas

Relata los conocimientos fundamentales de los procesos replicativos en distintos tipos de organismos y su relación con la herencia génica.

Expresa el proceso de transcripción, sus mecanismos de regulación, las modificaciones posttranscripcionales y su relación con el desarrollo y el medio ambiente.

Expone el proceso de traducción y los mecanismos de regulación traduccional y posttraduccional implicados en la generación del proteoma.

Discute la relación de los procesos de expresión génica su el metabolismo, desarrollo y respuestas el medio ambiente de los organismos.

Plantea los mecanismos moleculares y de intercambio genético implicados en la evolución de genomas.

Procedimentales

Relata desde una perspectiva histórica, las estrategias que dieron lugar a los avances científicos en el área de la biología molecular.

Compara alcances de técnicas moleculares para análisis de contenido y estructura genómica, diversidad genética de poblaciones, expresión génica y estado epigenético.

Plantea preguntas biológicas relacionadas con sus temas de investigación, desde la perspectiva molecular.

Actitudinales

- Argumenta propuestas de temas de investigación desde un enfoque molecular, genómico y evolutivo
- Discute acerca de trabajos de investigación de frontera en el área de la materia.
- Debate acerca de eventos históricos y de actualidad relacionados con la generación del conocimiento en el área.

COMPETENCIAS A LAS CUALES SE APORTA

Conocimientos:

- Genera conocimientos y aplica tecnologías innovadoras en el área de la agricultura y/o prospección de los recursos genéticos, para mejorar los sistemas de producción, aprovechar los recursos bióticos, y contribuir al desarrollo del trópico de manera sustentable.
- 2) Valora situaciones reales relacionadas con el manejo de los recursos genéticos del trópico, a fin de encontrar soluciones o estrategias innovadoras que incrementen la producción agrícola y posibiliten el aprovechamiento de los recursos genéticos en el trópico.
- 3) Genera alternativas innovadoras para el aprovechamiento agrícola y biotecnológico de los recursos genéticos del trópico.

Habilidades:

- 1) Discute en equipos interdisciplinarios para resolver problemas relacionados a la bioprospección y producción agrícola sustentable en el trópico.
- 2) Desarrolla su capacidad de generar conocimiento mediante la realización de investigación cuantitativa y cualitativa.
- 3) Divulga conocimiento científico y tecnológico.

Actitudes:

- 1) Trabaja en equipos interdisciplinarios para resolver problemas relacionados a la bioprospección y producción agrícola sustentable en el trópico.
- 2) Desarrolla de manera permanente su capacidad de generar conocimiento mediante la realización de investigación cuantitativa y cualitativa, considerando los conceptos, paradigmas, enfoques y tendencias teóricas y epistemológicas de la investigación en biología molecular.
- 3) Discute conocimiento científico y tecnológico.
- 4) Propone soluciones y alternativas novedosas viables para resolver problemas relacionados a la bioprospección y producción agrícola sustentable en el trópico.

COMPETENCIAS RECOMENDADAS

Analiza conceptos fundamentales de manera autodidacta.

Explica artículos de investigación en inglés.

Discute conceptos básicos de genética, biología celular, bioquímica.

SABERES NECESARIOS PARA EL DESARROLLO DE LA COMPETENCIA ESPECÍFICA

SABERES TEÓRICOS:

Conocimientos fundamentales de los procesos replicativos en procariontes, eucariontes y partículas replicativas.

Bases moleculares del proceso de transcripción, sus mecanismos de regulación y las modificaciones posttranscripcionales.

Eventos implicados en el proceso de traducción y los mecanismos de regulación traduccional y post-traduccional.

Mecanismos moleculares y de intercambio genético implicados en la evolución de genomas.

SABERES PROCEDIMENTALES:

Estrategias que dieron lugar a los avances científicos en el área de la biología molecular. Fundamentos y alcances de los métodos de análisis comparativos de genomas, expresión génica y estado epigenético.

SABERES CONDUCTUALES:

Expresa preguntas biológicas a nivel molecular, genómico y evolutivo.

Cuestiona principios éticos de eventos históricos y de actualidad relacionados con la generación del conocimiento en el área y desarrollos biotecnológicos.

	UNIDADES TEMÁTICAS				
HORAS	TEMAS	SUBTEMAS			
Conducidas: 26 Independientes:	I. Fundamentos de Biología molecular.	I.1 Nacimiento y la edad de Oro de la Biología Molecular: De la genética clásica a la biología molecular a través de un enfoque interdisciplinario en constante evolución.			
26		I.2 Estructura y Función de los ácidos nucleicos. El DNA es el material genético. El dogma central y sus excepciones.			
		I.3 Aplicaciones de la Biología Molecular en la generación de conocimiento básico, desarrollos biotecnológicos e ingeniería genética.			
Conducidas: 26	II. Estructura y Herencia.	2.1 Estructura de los genomas procariónticos. Elementos extracromosomales.			
Independientes: 25		2.2 Genomas eucariónticos: núcleo y organelos. Estructura de los cromosomas. Contenido de los genomas. Secuencias repetitivas. Clusters y tandems. Eucromatina y heterocromatina. Estructura de la cromatina. Nucleosomas e histonas.			
		2.3 Replicación. Características. Origen de replicación. Inicio, elongación y terminación. DNA polimerasas. División celular y repartición de genomas y plásmidos. Incompatibilidad de plásmidos.			
		2.4 Replicación y división celular en organismos multicelulares. 2.5 Otros genomas y partículas replicativas: Virus, fagos, retrovirus, viroides, priones. Replicación por círculo enrollado. Ciclo lítico.			
Conducidas: 26	III. El transcriptoma y su expresión.	3.1 Transcripción en procariontes. Inicio, elongación y terminación.			

Indonesia.	1	2.2.51
Independientes: 25		3.2 El complejo transcripcional eucarióntico. 3.3 Procesamiento y maduración de los mRNAs: "Capping", "Splicing", y Poliadenilación.
20		Ribozimas.
		3.4 Regulación de la transcripción en procariontes: Operones.
		Inductores y represores. mRNAs policistrónicos. Degradación de mRNA.
		3.5 Regulación transcripcional en eucariontes, a nivel promotores,
		procesamiento, y cromatina.
		3.5.1 Elementos cis-reguladores y Factores transcripcionales.
		3.5.2 Regulación post-transcriptional. microRNAs y RNAs de interferencia
		3.5.3 Metilación de DNA. Acetilación de histonas y remodelación de
		cromatina. "Impronta", epigenética y silenciamiento.
Conducidas:	IV. El proteoma.	4.1 El código genético: características y excepciones. 4.2 Traducción
26	Traducción y regulación	en procariontes 4.3 Traducción en eucariontes. 4.4 Regulación post-
	postranscripcional.	traduccional: Modificaciones post-traduccionales en eucariontes.
Independientes:		"Protein folding", compartamentalización y excreción celular.
25		Ubiquitinización y degradación de proteínas.
Conducidas:	V. Mecanismos de	5.1 Mistmatching. Efecto de mutaciones sobre péptidos y expresión
26	evolución molecular e	genética. El reloj molecular.
	intercambio genético.	5.2 Recombinación. Conjugación. Transferencia de plásmidos y T-
Independientes:		DNA.
25		5.3 Duplicación de genomas. Transposones. Retrotransposones.
		Pseudogenes.
		5.4 Alelos. Polimorfismos. Diversidad genética.

3.Etapas y actividades del Proyecto Formativo					
Etapas	Principales actividades de aprendizaje con el docente (AD)	Tiempo aproximado	Principales actividades de aprendizaje autónomo de los estudiantes (AA)	Tiempo aproximado	
Etapa I. Fundamentos de Biología molecular. Etapa II. Estructura y Herencia.	Exposición de estudiantes Exposición Docente Discusión de artículos clásicos que dieron origen a conocimiento básico. Discusión de examen. Lecturas guiadas.	26 h	Investigación bibliográfica. Lecturas autodidactas de textos especializados, revisiones científicas y artículos de investigación. Preparación de exposiciones de temas novedosos. Investigación bibliográfica.	26 h	
Петенца.	Exposición Docente Discusión guiada de textos especializados en conocimiento básico. Discusión guiada de revisiones de temas de frontera.	2011	Lecturas autodidactas de textos especializados, revisiones científicas y artículos de investigación. Preparación de exposiciones de temas novedosos.	2311	
Etapa III. El transcriptoma y su expresión.	Lecturas guiadas. Exposición Docente Exposición de estudiantes.	26 h	Investigación bibliográfica. Lecturas autodidactas de textos especializados, revisiones	25 h	

	Exposición de expertos invitados. Discusión guiada de textos especializados en conocimiento básico. Discusión guiada de revisiones de temas de frontera. Discusión de examen.		científicas y artículos de investigación. Lectura de revisiones y artículos de temas de frontera. Preparación de exposiciones de temas novedosos. Esquematización para integración de conocimiento aprendido.	
Etapa IV. El proteoma. Traducción y regulación postranscripcional.	Lecturas guiadas. Exposición Docente Exposición de estudiantes. Discusión guiada de textos especializados en conocimiento básico.	26 h	Investigación bibliográfica. Lecturas autodidactas de textos especializados, revisiones científicas y artículos de investigación. Preparación de exposiciones de temas novedosos.	25 h
Etapa V. Mecanismos de evolución molecular e intercambio genético.	Exposición Docente Exposición de estudiantes. Exposición de expertos invitados. Discusión guiada de textos especializados. Discusión guiada de revisiones de temas de frontera.	26 h	Investigación bibliográfica. Lecturas autodidactas de textos especializados, revisiones científicas y artículos de investigación. Selección y lectura de revisiones y artículos de frontera.	25 h

Metodología de enseñanza-aprendizaje

La metodología utilizada para el desarrollo de este curso es la del aprendizaje activo. Esto significa que se promoverá que el estudiante busque la construcción del saber de manera autónoma, y que sitúe al docente como un guía y facilitador que acompaña al estudiante, a través de la implementación de una serie de estrategias de enseñanza- aprendizaje, que promueven el involucramiento de la persona que aprende en su proceso formativo.

Técnicas de enseñanza-aprendizaje a ser utilizadas

Lecturas guiadas.

Exposición Docente

Exposición de estudiantes.

Exposición de expertos invitados.

Discusión guiada de textos especializados en conocimiento básico.

Discusión guiada de revisiones de temas de frontera.

Exposición de expertos invitados.

Discusión de exámenes.

Investigación bibliográfica.

Lecturas autodidactas de textos especializados, revisiones científicas y artículos de investigación.

Lectura de revisiones y artículos de temas de frontera.

Preparación de exposiciones de temas novedosos.

Selección y lectura de revisiones y artículos de frontera.

Esquematización para integración de conocimiento aprendido.

NORMAS Y PROCEDIMIENTOS DE EVALUACIÓN

El curso se imparte de modo interactivo en el que la participación del estudiante es fundamental para la consecución de los objetivos del curso.

A continuación se presenta una tabla en la que se presentan las estrategias de evaluación a ser usads y la ponderación que tendrán dentro de la evaluación general del curso.

Actividad de aprendizaje	Instrumento de Evaluación	Ponderación
Lecturas guiadas.	Evaluación docente de la participación	20%
Discusiones guiadas de textos	objetiva e informada en la discusión.	
básicos, revisiones y artículos.		
Exposición de expertos.		
Investigación bibliográfica	Autoevaluación	20%
Exposición de estudiante	Evaluación entre pares	
Esquematizar conocimiento	Material didáctico (ppt, esquema).	30%
aprendido.		
Reforzar conocimiento discutido.	Exámenes.	30%

BIBLIOGRAFÍA

Textos básicos de conocimiento especializado:

Krebs, Goldstein & Kilpatrick. Lewin's Genes XI. Ed. Jones & Bartlett Learning. 11 ed. 2014.

Artículos clásicos que generaron conocimiento básico:

Watson JD & Crick FHC. 1953. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature: **171**, pages737–738

Revisiones y artículos actualizados de investigación de frontera.