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A case study of Rhyssomatus nigerrimus Fhåraeus 

(Coleoptera: Curculionidae) 
 

Jose Lopez-Collado, Catalino Jorge Lopez-Collado 
 
Abstract 
The objective of this study was to estimate the potential distribution of Rhyssomatus nigerrimus in 
Mexico. Point presence data and bioclimatic data were used to construct the model. Kernel density 
distributions were estimated for the bioclimatic layers to represent the response function and to combine 
them. The vulnerability of municipalities planted with soybean was computed as a function of suitability 
and revenue. Results showed a medium to high potential occurrence in the northern states of Mexico: 
Tamaulipas, North of Veracruz in the Gulf of Mexico and Sonora and Sinaloa in the Pacific Ocean. Low 
suitability occurred in the northern and central areas of the country. The Area under the Curve was 0.805 
and the True Skill Statistics was 0.625, both indices supporting the validity of the model. Soybean-
planted municipalities in Tamaulipas, San Luis Potosi, Chiapas and Campeche were estimated to have a 
medium to high vulnerability to pest occurrence. 
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1. Introduction 
The Mexican Soybean Weevil (Rhyssomatus nigerrimus) Fhåraeus (Coleoptera: 
Curculionidae) is native to America and is found in Mexico, Barbados, Martinique, St. 
Vincent, Belize, Guatemala, Panama and South America [1]. It was first reported in Mexico 
from collection trips in the states of Veracruz and Guerrero [2]. Later, it was recorded in 
Guanajuato in wild hosts and in Nayarit and Tabasco [3, 4]. Adults of the Mexican Soybean 
Weevil have different host plants, including Acacia spp., Amaranthus spp., Ficus spp., and 
Ipomoea spp. [4]. Recently, it was found as a pest of soybeans in San Luis Potosi, Tamaulipas 
and Chiapas [5, 6]. In soybeans, it feeds on the vegetative and reproductive structures. Adults 
feed on plants and seedlings, attacking stems, branches, sprouts, and buds. The larvae feed 
inside the pods; later, it drops to the soil, transforms to pupa and overwinters as adult. The 
insect shows one generation per year [5]. Soybean is planted in Mexico in about 178,530 ha in 
the states of Campeche, Chiapas, Chihuahua, Jalisco, Nuevo Leon, Quintana Roo, San Luis 
Potosi, Sonora, Tamaulipas, Veracruz and Yucatan, generating revenue near US$ 110 million 
[7].  
The geographic distribution of organisms is a key factor in risk analysis and pest control. 
Habitat distribution is estimated by means of correlative, deductive and hybrid methods. 
Inductive or correlative methods rely on georeferenced point data, collected by sampling or by 
specimens stored in museums and bioclimatic layers [8]. Deductive methods use the 
physiological response of organisms to bioclimatic variables such as temperature and 
precipitation, which are known to influence the geographic distribution of species; hybrid 
techniques combine both methods [9].  
The diverse results obtained from different modeling tools suggest combining them [10]. 
Alternatively, input layers can be combined based on their similarity to conditions where the 
species are known to thrive, using ad-hoc procedures [9]. This approach requires processing 
different data layers, which are combined by a simple or weighted sum [11, 12]. The analytic 
hierarchic process AHP combines data from different sources in such a way that it uses 
heuristics to rank the relative importance of the data by making pairwise comparisons [12, 13]. 
The ranks are converted to weights and assigned to the data layers which are grouped in 
categories for combination. This method has been applied to estimate suitable land areas for 
rice production [14], determine the potential distribution of forest pests [15] and to select landfill  
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zones [16]. Because R. nigerrimus is a pest in its initial 
colonization stage of soybean crops in Mexico, it is important 
to know its potential geographic range and which 
municipalities with soybeans may be affected. Therefore the 
goal of this study was to apply the AHP to find the potential 
distribution of R. nigerrimus and estimate soybean regions 
susceptible to potential damage in Mexico. 
 
2. Materials and Methods 
This work applied a composite hierarchic approach to compute 
the potential distribution of R. nigerrimus [17], and it was 
realized during 2013-2015 from data compiled at different 
dates. The first step was extracting the bioclimatic data layer 
values from the points where the specimens have been 
reported, these values were then transformed using a response 
function. In the second step, weights associated to each layer 
were computed based on pairwise comparisons; weights 
corresponded to the normalized eigenvalues of a pairwise 
comparison matrix representing the variables grouped by 
categories. Weights derived from the pairwise comparisons 
allow ranking the relative importance of each layer. The third 
step involved combining the layers by using map algebra 
operations. The model was evaluated by splitting the 
occurrence data in two sets: one used for training and another 
for testing. Crop vulnerability was computed by multiplying 
the potential distribution index by revenue.  
 
2.1. Specimen data 
To estimate the potential distribution of R. nigerrimus, geo-
referenced point data were pooled from collection reports [2, 4, 

6], the data set was split in n=25 (70 %) for training and n=10 
(30 %) for testing.  
 
2.2. Selection of bioclimatic layer values and response 
function 
Values were extracted from numeric [18] and nominal 
bioclimatic layers at the points where the species was present. 
The numeric variables were: mean annual temperature, mean 
temperature of coldest quarter and mean annual precipitation. 
Nominal values for soil and climate types were also extracted 
[19, 20]. These variables are thought to affect some biological 
traits of the species, such as overwintering and survival [6]. To 
combine the layers it is necessary to standardize the raster 
values between cero and one [12], cero meaning no suitability 
and one indicates maximum suitability. Different 
transformation functions have been proposed depending of the 
problem domain. For numeric variables in the sample, the 
response was modeled by a kernel density distribution, while 
for categorical variables each value was ranked according to 
its frequency to obtain a discrete density estimate. The layers 
were then transformed to their corresponding density 
estimates. In both cases, the kernel distributions reflected the 
information contained in the observed values so that the most 
frequent received the highest response. 
 
2.3. Assessment and pooling of bioclimatic layers 
In the second step, the input variables were ranked by pairs, 
using a nine points scale [21]; rankings are subjective measures 
of how important a variable is related to another one, and the 
weights were obtained by computing the normalized 
eigenvalues of the square matrix, where rows and columns 
corresponded to the input variables and the matrix cells to the 
pairwise rank [17]. The suitability map (Yf) was created by 
combining the layers with their assigned 

weights:


i

wiXijXc(ij)
, where Xc (ij) is a particular cell 

value of the composite layer, w and X are the weight and input 

layer respectively, while j refers to any cell value of the i-th 
raster layer. This procedure was applied at each step depicted 
in Fig. 1. The suitability map was aggregated using the k-mean 
clustering algorithm to obtain four classes indicating different 
degrees of geographic suitability: unsuitable, low, medium and 
high suitability. 
 

 
 

Fig 1: Hierarchic approach applied to compute the distribution model 
for R. nigerrimus. The X (i)'s are the input variables or data layers, 
the Xc (i)'s are the composite layers; the w's are weights used for 

combining the layers to obtain Yf, the final distribution map. 
 
2.4 Model evaluation 
Model performance was evaluated by using the independent 
test data to estimate two different metrics: the Receiver 
Operating Characteristic (ROC) curve and the corresponding 
Area under the Curve (AUC), and by computing the True Skill 
Statistics (TSS). These metrics were computed using the test 
data and 10,000 background point data extracted randomly 
from the suitability map [22]. The AUC is a threshold 
independent index that tends to one when the model is 
appropriate and to 0.5 when it cannot be distinguished from a 
random model. The TSS range from -1 to 1, the closer to 1 the 
better the model [23]. The TSS requires converting the 
suitability map to a presence (1)-absence (0) map U by 
applying a threshold value th, so that U= 1 if Yf  th, 0 
otherwise. TSS value was computed from observed data point 
at the lower suitability value. For the AUC, test data was 
resampled to obtain an estimate of the confidence interval [24].  
 
2.5 Vulnerability of soybean crop 
The vulnerability of soybean to this species was estimated as 
the product of mean potential occurrence and total revenue at 
the municipality level [11], using data for year 2013 [7], revenue 
values were normalized between zero and one [12]. Operations 
were performed with R 3.1.2 and Mathematica 8.01 [25, 26]. 
 
3. Results and Discussion 
3.1. Kernel distributions and layer combination 
The kernel density estimates are presented in Fig. 2 and 3 for 
the numeric and nominal sample points. The estimates 
represented the expected suitability values for the bioclimatic 
layers derived from the train presence data. Suitable 
temperatures ranged from 10 to 15 °C up to near 30 °C while 
precipitation increased from zero up to a maximum near 1,000 
mm and then decreased in an irregular shape to about 4,000 
mm. In the case of climate and soil types, which are nominal 
variables, the response values corresponded to the normalized 
frequency values. The most suitable climate was Aw, 
corresponding to a tropical wet type. The most common soil 
types where the insect was found were Pellic Vertisol (Vp) and 
Chromic Luvisol (Lc) (Fig. 3). 
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Fig 2: Kernel density estimates of mean annual temperature (A), temperature of coldest quarter (B) and mean annual precipitation (C). The lines 
represent the kernel density distribution and the bars are the normalized histogram values obtained from the train data. 

 

 
 

Fig 3: Discrete density estimates for climate (A) and soil layers (B). 
The bars are the standardized histogram values obtained from the 

train data. 
 
Most of the acceptable values matched those of tropical 
climates; for example, temperature of coldest month is higher 
than 18 °C for A type climates [27] and fell within the observed 
range. Mean annual temperature synthesized temperature 
variations and reflected average conditions. Though the 
minimum threshold temperature is unknown for this species, 
many of the Coleopterans have a minimum value above 4 °C 
[28], and the estimated range pointed to a species with low 
tolerance to cold and, again, described an insect adapted to 

tropical regions. Climate types where the insect was found 
corresponded mostly to tropical ones, as reported previously 
[1]. Few observations fell within a BS climate which is a dry, 
semi-arid type and may correspond to marginal areas of the 
species distribution. Biologically, soil is important because the 
adults overwinter in it [6], vertisol and luvisol types are mostly 
found in tropical grasslands or turned to agricultural fields [29].  
Recently, kernel density models have been proposed to 
estimate species distributions [30], and previously, this 
modeling approach has been applied to extrapolate from point 
presence data to geographic aerial occurrence. In the current 
approach, kernel density estimation provided an alternative to 
other modeling techniques that use distributions such as those 
based on quantiles like the BIOCLIM or DOMAIN models [31]. 
The combination of layers required assigning values 
representing their importance. The weights were 0.636, 0.104 
and 0.258 for mean annual temperature, precipitation and 
temperature of coldest quarter, respectively. Therefore, mean 
annual temperature was considered the most important because 
it comprised the whole range of values the insect experiment 
during its life cycle and because it is known that temperatures 
have a direct influence on insect development and survival [32]; 
temperature of coldest quarter was ranked second because it 
affects adult overwintering and survival [5]. Precipitation had 
the lower value as an indirect factor related to the development 
of the host plants. Climate and soils layers had weights of 0.75 
and 0.25 respectively, climate was considered more important 
because it integrates different environmental factors. Climate 
and soil type formed the first composite category with weight 
0.25, while mean annual temperature, precipitation and 
temperature of coldest quarter were grouped in a second 
category with weight 0.75. Therefore, the second composite 
category was considered more important than the first one 
because it contained more specific variables. 
 
3.2. Potential distribution map 
The final potential distribution map is presented in Fig. 4. The 
most suitable regions included areas of the northwestern states 
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like Sonora and Sinaloa and northeastern states like 
Tamaulipas, San Luis Potosi and northern Veracruz. Medium 
suitable regions scattered throughout the previous states, the 
Pacific coastal regions of Nayarit, Jalisco, up to Oaxaca, and 
parts of the Yucatan Peninsula. Low suitability regions spread 
from Yucatan peninsula to central Veracruz in the Gulf of 

Mexico and from Chiapas up to Nayarit in the Pacific States. 
Unsuitable regions comprised most of the Baja California 
peninsula, and the central and northern states, like Chihuahua, 
Coahuila, Durango, Zacatecas, and Hidalgo. These areas 
corresponded mostly to dry, temperate climates.

 

 
 

Fig 4: Potential distribution of R. nigerrimus in Mexico grouped in four classes. Lines correspond to administrative state boundaries. Circles 
represent train data and stars correspond to test data. Suitability classes are: unsuitable US, low LW, medium MD and High HG. 

 
The highly suitable regions corresponded mostly to states in 
the northern coastal states of Mexico and parts of Chiapas and 
Puebla and reflected the sampling effort of the species as a 
pest of soybeans. On the other hand, the previous reports of 
this species in wild hosts [2, 3], located individuals in the low 
and medium suitable regions, the same happened with insects 
reported in Guanajuato [4], which can be considered as a 
marginal region because of the low suitability values (Fig. 4). 
These results indicated that R. nigerrimus is mostly adapted to 
semitropical conditions but may reach arid areas which 
translated to the low suitable areas of the model. Worldwide, 
the findings agreed with reports relating this species to tropical 
locations in the Americas [1, 2]. 
 
3.3. Model evaluation 
The ROC curve is presented in Fig. 5. The bootstrap 
estimation yielded an AUC value of 0.805 with a 95 % 
confidence interval that ranged from 0.625 to 0.875. The TSS 
index had the highest value of 0.625 at the lowest observed 
test point; this index was used instead of the kappa index 
because is considered to have better statistical properties [23]. 
Both indices showed a departure from randomness and implied 
a significant model [23, 33]. The indices supported the validity of 
the full model, which presented a medium suitability covering 

most of the states of Tabasco and Nayarit, reported as regions 
for the presence of R. nigerrimus [5].  
 

 
 

Fig 5: Bootstrap Receiver Operating Curve (ROC) for the test data of 
R. nigerrimus. 

 
The validation process showed independent support for the full 



 

~ 95 ~ 

Journal of Entomology and Zoology Studies 
 

model which used only five data layers. Other models use 
most detailed information, for example NAPPFAST takes into 
account threshold temperatures for insect development and 
computes the number of generations per year [34] while 
CLIMEX [35] uses weekly variables. However, previous work 
has suggested that bioclimatic variables like the ones used in 
this research, provide enough insight into the distribution of a 
species [36]. In the current model, soil and extreme cold 
temperatures accounted for basic biological aspects influenced 
by these factors, such as overwintering survival and location 
[6]. For a novel pest species like R. nigerrimus, it might be 
appropriate to establish the quantitative nature of temperature 
and development or to estimate stress thresholds to apply other 
detailed models. Because the suitability map correctly 
predicted most of the test data, it suggested a simple way to 
compute the potential geographic distribution of insect pests 
for which detailed quantitative information is lacking.  
Regarding the sample size used to estimate the distribution of 
R. nigerrimus, previous work found that sizes as small as ten 
can yield valid estimates of the geographic distribution but it 
also depended on different factors such as species type, 
climatic requirements, sampling bias or modeling technique 
[37]. The current estimation was computed to obtain regions 
where the species may thrive given its new pest status and 
provides information for better planning, for example 
detection sampling [38]. Better estimation can be computed 

with more point data; however, this may happen when the pest 
invades new areas, thus reducing the advantage of forecasting 
its distribution.  
 
3.4. Economic impact on soybeans 
Based on the total revenue and the potential occurrence, the 
vulnerability map is presented in Fig. 6. Because it weights 
revenue by suitability, high vulnerable areas reflected high 
production and high occurrence values, such as those 
municipalities of Tamaulipas, San Luis Potosí and Campeche. 
Intermediate vulnerable areas occurred across Sonora, Chiapas 
and Campeche. Low vulnerable regions spread from 
Chihuahua, northern Tamaulipas, Jalisco and Quintana Roo. 
The economic impact was based on a simple product of 
suitability and revenue, however, more detailed analysis is 
required to better know the potential economic impact of this 
native species. Other factors affecting the economic impact are 
alternative crop hosts, spread rate and the dynamics of damage 
through time [39] and may need to be modeled by other 
methods. Because R. nigerrimus is native to America and 
Mexico, control measures such as eradication may not work; a 
related species, R. subtillis Fiedler is a pest of soybeans and 
beans in Argentina [40], therefore, it is apparent that the genus 
has the potential of causing damage to soybeans and related 
crops. 

 

 
 

Fig 6: Expected vulnerability of soybean-planted municipalities to R. nigerrimus. 
 

4. Conclusion 
A hierarchic approach was used to combine data layers to 
estimate the geographic distribution of R. nigerrimus and its 
potential economic impact on soybeans in Mexico. It was 
found that R. nigerrimus had a medium to high potential 
distribution in some northern states of both Gulf of Mexico 

and the Pacific Ocean. Different validation indices supported 
the distribution model capacity to represent the potential 
geographic distribution of this species. Soybean areas with 
medium to high risk of economic impact comprised some 
municipalities in the states of Tamaulipas, San Luis Potosi, 
Veracruz and Campeche.  
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